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Abstract

In  the  domain  of  healthcare  systems,  the  Electronic  Health  Record  (EHR)  has  enabled
physicians to store patient data, track follow-ups, and collect information for future research
on diseases. However, the process of documenting conversations between doctors and patients
for EHR is often cumbersome and time-consuming, leading to decreased physician efficiency.
Additionally, hiring a scribe to perform this task can be complicated and expensive. Recent
advances  in  machine  learning  and  natural  language  models  have  paved  the  way  for
automating  medical  documentation,  specifically  doctor-patient  conversations.  These
approaches integrate Automatic Speech Recognition (ASR), Text Summarization, and Named
Entity Recognition (NER) to streamline the process. However, implementing medical scribing
poses several challenges and barriers that can affect the quality of generated prescriptions.
Numerous  techniques  have  been  proposed  to  address  the  limitations  associated  with
implementing medical transcription in healthcare systems. This study follows a systematic
literature review approach and the PRISMA statement to analyze peer-reviewed articles from
seven databases—IEEE Explore, ACM Digital Library, Arxiv, PubMed, SpringerLink, ACL
Anthology, and Google Scholar. Sixty-eight articles were included in the review and were
analyzed  through  a  descriptive  and  thematic  analysis.  Of  these,  26  focused  on  ASR
technologies,  17 on text summarization methods,  and 27 mentioned NER techniques.  Our
analysis  revealed  that  most  studies  were  conducted  on  Chinese  datasets,  and the  Google
speech-to-text API was commonly used in ASR tasks. Text summarization and NER tasks
frequently employed transformer-based models, which yielded promising results. However,
while  many  articles  addressed  individual  tasks  of  medical  scribing,  few included  all  the
needed tasks for comprehensive medical documentation. Additionally, models performed well
in individual tasks but lacked practical implementation due to limited training data. 
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1. Introduction

Recently adopted Electronic Health Records in healthcare sectors have enabled physicians to store
important patient data for improved patient care, study cases with complete patient histories, and
maintain proper schedules through faster data analysis [1, 2]. Through medical scribing [3], doctor-
patient conversations can yield the needed information. The physician documents the entire doctor-
patient conversation, which is time-consuming and tedious and requires a lot of expertise from the
scribe. A 2020 survey  [4] of 7510 US clinicians revealed that 38.2% had at  least one burnout
symptom. Medical scribes [5] are now used in clinical documentation, reducing physician burnout
significantly.  However,  this  initiative  has  added  complexity  and  training  and  hiring  costs  of
scribes, inefficient  service,  and  the  possibility  of  data  violations  of  patients'  confidential
information.  Thus,  incorporating  several  automated  tools  for  medical  scribing  can  reduce  the
challenges faced through manual scribing and increase the efficiency of the work.
     Recent  advances  in  NLP and machine  learning have  enabled  its  use in  many fields  and
automated many manual tasks [6]. ASR, NER, and text summarization make up a complete digital
scribing  model.  These  tasks  also  have  subtasks  like  patient  data  de-identification,  noise
suppression,  speaker diarization,  entity  extraction,  and more.  In healthcare,  Nuance [7],  Robin
Healthcare [8], DeepScribe [9], and Amazon [10] are developing digital scribing models to replace
manual doctor-patient conversations. Several research methods have been developed for digital
scribing,  but  few  have  been  used  for  clinical  documentation.  The  efficiency  of  the  model
determines the clinical implementation of medical documents. Concerns about patient data security
and privacy necessitate anonymization.

Several review studies have examined digital scribing tasks and their applicability, showing
how NLP and AI tools were used to approach different medical scribing tasks, evaluating their
performance  using  performance  matrices,  and  identifying  their  limitations  and  drawbacks.  As
automated tools have not been widely used in medical documentation, these review papers found
poor model performance. Limitations of existing review papers include not comparing research in
different languages and clinical settings. In practice, there are environmental barriers to processing
the  doctor-patient  conversation  that  the  review  papers  did  not  consider.  The  trained  models'
performance is affected by accents even in the same language.

Our proposed review paper examined digital scribing models on datasets varying in language,
accent, clinical settings, size, and conversation type. We also looked for ways to optimize task-
specific NLP models by processing noise, punctuation, non-lexical terms, and audio frequency.
The major objectives that our review gained are:

1. Observation, evaluation and comparison of NLP models performed in several individual
tasks of medical scribing (ASR, NER, text summarization, de-identification).

2. Observation of the type of dataset the task-specific models were trained on. We did not
solely compare the trained models, rather we evaluated them based on their dataset.

3. Assessing the limitations and challenges the proposed models faced.
4. Analysis of the preprocessing and postprocessing tasks that optimized the performance of

the trained models.

The upcoming sections  of  this  paper  will  offer  an in-depth  description  of  our  systematic
review. Section 2 will explain the methods and structure used in our review, while Section 3 will
present  the  key  outcomes  of  our  research.  Additionally,  Sections  4  and  5  will  provide  a
comprehensive discussion of our findings and highlight  the limitations  of the existing models.
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Finally, in Section 6, we will offer concluding remarks summarizing the focus of our study.

2. Methodology

For our systematic  review of our elected field,  we followed the Preferred Reporting Items for
Systematic  Reviews  and  Meta-Analyses  Protocol  (PRISMA-P)  [11].  The  PRISMA  method
encompasses  a  27-item  checklist  that  guarantees  the  completeness  and  quality  of  the  review
process while minimizing bias and maximizing the reproducibility of the findings. The PRISMA
method offers an effective structure for identifying, selecting, and synthesizing relevant studies, as
well as for evaluating the overall quality and risk of bias of the included studies. Therefore, our
study  utilized  the  PRISMA  model  for  the  selection  of  adequate  articles.  The  research  work
selection and categorization for our systematic review following the PRISMA method has been
displayed  as  a  flowchart  (see  Fig.  1)  where  the  number  of  identified,  screened,  included  and
excluded articles in each stage has been represented briefly.

2.1.  Study Selection Strategy and Literature

Reviews based on studies related to the current status and recent developments on digital scribing
have been performed in recent years where progress on various components of digital scribing has
been observed. Table 1 shows a list of review works that have been done in recent years.

Table 1 Previous review done on the related fields

Reference Year Review Type Objective

[12] 2019 systematic Literature on the use of Speech recognition (SR)
technology in healthcare, covering a wide range
of medical domains, and clinical documentation,
highlights  the  need for  further  investigation  of
the use and effectiveness of SR beyond radiology
concerning the pros and cons and improvement.

[13] 2021 Scoping Providing  an  overview  of  the  current  state  of
development, validation, and implementation of
digital scribes and NLP tools for healthcare, and
recommending  future  research  to  focus  on
clinical validity and usability.

[14] 2021 Scoping Measurement of the potential benefits of digital
scribe technology in reducing physician burnout
and improving patient experience concerning the
barriers  to  implementation  such  as  linguistic
variations,  and  upfront  costs  and  suggests
potential solutions to overcome these barriers.

[15] 2023 Systematic To assess the potential of intelligent solutions for
ASR  with  automatic  documentation  during  a
medical  interview  and  identify  future  research
area
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To identify recent studies, the objective, scope and research questions were initially visualized and
the inclusion and exclusion criteria were subsequently determined. Depending on the inclusion and
exclusion criteria, the relevant studies were elected for further review. The inclusion and exclusion
criteria represent the recent advancements in the relevant field. The inclusion criteria that were
chosen narrowed the study to some specific topics and scenarios keeping the scope of the study
more precise and the study domain more elaborate. The research objectives along with research
questions are stated (see Table 2) and the selection criteria for the research articles are represented
(see Table 3).

Table 2  Research Statement, Objective and Research Questions of our Study

Research Statement To scrutinize diverse facets of digital scribing in clinical documentation,
while assessing the progressions that have been achieved in correlation
with varied settings and configurations.

Objective To make a comprehensive evaluation of the efficacy of various methods,
an assessment of the innovativeness and constraints of various methods
applied  for  different  tasks  in  digital  scribing  in  the  context  of  clinical
documentation,  explore  their  potential  contributions  across  diverse
healthcare  settings  and  populations  and  identification  of  possible
impediments and enablers to their adoption.

Research Questions RQ1: What type of clinical data were collected and how were the models
applied to them?

RQ2:  What  explicit  subtasks  had  been  incorporated  in  medical
documentation  and  what  techniques  were  implemented  for
executing particular subtasks?

RQ3: Which metrics were employed to evaluate the performance of the
implemented  techniques  and  what  was  the  extent  of  their  efficacy  in
achieving the desired outcomes?

RQ4: What was the degree of novelty or originality demonstrated by the
implemented  techniques  in  comparison to  existing  approaches?  Studies
that do not report outcomes related to the use or impact of digital scribe
aches or methods?

RQ5: What ethical implications are associated with the adoption of digital
scribing in Electronic Health Records (EHRs), including issues pertaining
to patient confidentiality and safeguarding of data?

RQ6: What is the practicality of implementing tasks of digital scribing in
diverse  healthcare  contexts,  considering  the  influence  of  demographic
factors,  language,  clinical  setup,  environment  and  population,  and
identifying potential obstacles and catalysts to adoption?

RQ7: In what manner can techniques related to digital scribing surmount
the hindrances presented by manual scribing?
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Table 3 Inclusion and Exclusion Criteria for our proposed study

Inclusion Criteria Exclusion Criteria

Articles  that  elaborated  on  different  tasks  on
automated scribing

Articles  where  different  subtasks  of
digital  scribing  methods  implemented
beyond  the  field  of  electronic  health
record systems

Articles that are written in English
Articles  which  are  written  in  any  other
language rather than English

Studies that are exclusively focused on the subject of
medical documentation, are methodologically rigorous
and relevant to the research question.

Studies that were not empirical research,
such  as  books,  surveys,  review  papers,
conference  reviews,  editorials  and
opinion papers.

Articles that have established models and displayed the
performance evaluation of their model

Studies  that  did not  aim to achieve  any
subtask related to digital  scribing or did
not  attempt  to  automate  medical
documentation in any way.

Articles  that  have  described  different  practical
scenarios regarding digital  scribing or a specific task
on digital scribing

Studies  that  do  not  report  outcomes
related  to  the  use  or  impact  of  digital
scribes

3. Results

3.1  Research Work Selection from the Database

To accomplish the stated research objective and address the research questions, an extensive search
was conducted for scholarly articles across multiple databases, utilizing a carefully curated set of
search strings.  This  methodological  approach allowed for a comprehensive examination  of the
literature, enabling us to obtain a diverse range of relevant and high-quality sources to inform our
study. 
     Upon selecting suitable databases, various combinations of search strings were formulated and
tested via an advanced search of the databases. The search strings that yielded the most favourable
outcomes were chosen for further screening. The selected search string included terms: "digital
scribe", "clinical documentation", transcription, "natural language processing", NLP, "named entity
recognition",  medical*,  clinical*,  digital,  limitation*,  barrier*,  environment*,  population,
language*,  Chinese,  English,  “speaker  diarization”,  “speech  recognition”,  ASR,  “text
summarization”, “speech to text”, automate*, scribe*, NER, conversation*, EHR, healthcare, “text
to snippet”. The advanced search feature of databases provides operators with the ability to create
variations in search terms to obtain the maximum search results. By combining search terms with
Boolean operators "AND", "OR" and “NOT”, more specific and extensive search results can be
generated. Furthermore, the utilization of quotation marks " permits the search for exact phrases,
whereas the asterisk * allows for the search for variations of a specific  keyword or term.  For
example, the * is used as a wildcard to capture variations of the term "scribe," such as "scribes" or
"scribing." The " is used to search for exact phrases, such as "medical scribe." 
     In  addition,  a  manual  search  was  executed  on  Google  Scholar  to  retrieve  pertinent
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articles. Furthermore, specific papers were obtained from the references of relevant study works. 

Table 4 Search string sample of the ACM Digital Library

[[Abstract:  scribe*]  OR  [Abstract:  "medical  documentation"]  OR  [Abstract:  "clinical
documentation"]  OR  [Abstract:  "text  summarization"]  OR  [Abstract:  "speech  to  text"]  OR
[Abstract: "speaker diarization"] OR [Abstract: "text to snippet"]] AND [[Abstract: medical] OR
[Abstract:  clinic*]  OR [Abstract:  healthcare]  OR [Abstract:  ehr]]  AND  [[Abstract:  nlp]  OR
[Abstract:  "natural language processing"] OR [Abstract:  asr] OR [Abstract:  "automatic speech
recognition"]  OR  [Abstract:  "named  entity  recognition"]  OR  [Abstract:  ner]  OR  [Abstract:
automate*]  OR  [Abstract:  digital]  OR  [Abstract:  limitation*]  OR  [Abstract:  barrier*]  OR
[Abstract:  environment*]  OR [Abstract:  population*]  OR [Abstract:  language]  OR [Abstract:
english] OR [Abstract: german] OR [Abstract: chinese]] AND [E-Publication Date: (01/01/2013
TO 12/31/2023)]

     The search results were restricted to the time frame between 2013 and 2023 and written in
English. In accordance with the PRISMA flowchart, our study entailed the initial accumulation and
retention of search results in a CSV file format. Utilizing a systematic and transparent approach for
conducting systematic  reviews is crucial  in ensuring the accuracy and reliability of the review
results. In order to obtain the desired research papers, it is necessary to employ a structured method
backed  by  a  diverse  database  and  substantial research  in  the  relevant  sector  along  with
clear and descriptive protocols, as well as thorough and rigorous investigation. Consequently, the
indicated  articles  underwent  inspection. In  the  first  screening,  the  articles  were  selected  by
evaluating their titles, abstracts, and keywords. The articles were excluded based on the exclusion
criteria of our study. In the second screening, a full-text survey of the remaining articles was done,
and based on the inclusion and exclusion criteria, they were evaluated and selected.

3.2 Query Output

After the application of the search strings to corresponding databases and the collection of related
articles from manual searches and reference retrieval,  in total  1873 articles were found. These
search results included both journal and double-blinded conference papers. Table 5 represents the
number of search result outputs of individual databases.

Table 5 Search Results from Selected Databases

Database Search Result

IEEE Xplore 264

ACM Digital Library 69

Arxiv 129

MedLine 608

SpringerLink 621

ACL Anthology 167

Google Scholar 15
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Total 1873
     Initial screening was performed on the 1873 identified articles. Upon removing the duplicates,
1796 articles were selected from the identified 1873 articles and were gone for further evaluation.
Even though SpringerLink had the highest number of search results  with 621 results,  only 45
articles were selected after 1st screening. 78 articles from 264 research articles (IEEE Xplore) were
included which was the highest screening to identified articles ratio. The second phase of screening
was done on the selected 1796 articles by studying only the titles and abstracts of the articles.
Upon analysis, 253 articles were kept for full-text study. After the full-test study on 253 articles,
116  articles  were  included  for  eligibility.  Finally,  after  further  evaluation,  68  articles  were
eventually selected that met our inclusion criteria for the systematic review. The excluded articles
were  attributed  to  various  reasons,  such  as  articles  had  duplicates,  were  not  relevant  to  the
healthcare domain, did not specify any subtask associated with digital scribing, were not written in
the English language, or identified subtasks related to the medical domain digital scribing but did
not undertake any efforts to automate medical documentation. 

Fig. 1 PRISMA workflow diagram of article selection proposed systematic review
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     During the course of the studies, diverse empirical information was identified and recorded for
the research. The key topics considered in article analysis are:

 Published year of the article

 Objective of the research work

 Subtask of digital scribing that was performed, subtasks included text summarization, Named
Entity Recognition, Automatic Speech Recognition, speaker diarization, de-identification

 Type of data that was collected along with the language of the data and clinical setup

 Approach that was employed in achieving the objective

 Specialization that the approached model is done on the clinical document

 Evaluation of the performance of the approached models by measuring through evaluation
metrics 

 Limitations of approached models and the challenges they have been able to overcome

3.3 Features of Digital Scribing

In  a  generic  digital  scribing  [16] tool  for  the  Electronic  Health  Record  (EHR)  [17],  several
subtasks  are  performed  to  produce  clinical  documentation  which  includes  Speech-to-text
conversion [18], noise reduction [19], speaker diarization (SD) [20, 21], de-identification [22, 23],
text  summarization[24],  text-to-snippet  conversion  which  performed  by  Automatic  Speech
Recognition (ASR) [25],  Named Entity Recognition (NER) and other NLP models. Based on the
motive  and  target  outcome,  these  subtasks  are  assembled  to  generate  the  intended  medical
documentation tool to reduce the complexity. 
     The ASR model is utilized to handle the physician-patient conversation and convert the audio
into  text  of  the  language  in  which  the  model  was  trained.  The  ASR  model  first  performs
preprocessing for training the audio data which includes noise suppression [12, 14, 16, 26] audio
normalization and segmentation  [25, 26]. On the other hand, Speaker diarization (SD) involves
dividing an audio recording into distinct segments based on the identity of the speaker in each
segment. The segments are separated in a way that ensures that each one consists of only one
speaker.  After  that,  the  outputs  from SD and ASR are reconciled  into  a  transcribed text  as  a
dialogue script.  After that,  the transcribed text is processed through the NER model to extract
necessary information (symptoms,  patient information, disease name, medication details, follow-
up suggestions, and advice). Later on, de-identification is performed by applying NER where the
information  of  the  patient  is  removed  to  ensure  privacy  and  security.  Furthermore,  the  key
information can be summarized from the transcribed document using abstractive summarization
techniques.  A brief workflow diagram is  displayed (see  Fig.  2 )  for a better  understanding of
automated medical scribing.
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Fig. 2 Workflow Diagram of Automated Medical Scribing

3.4 Factors and Technologies in Speech-to-Text Conversion

Among the 68 selected articles that met our requirements for the study, 26 studies   [18–22, 26–46]
introduced  Automatic  Speech  Recognition  technologies  for  accomplishing  different  subtasks
related to speech-to-text conversion. Audio data collection plays a vital role in ASR models. 

3.4.1 Clinical Setup and Audio Format

To collect audio data, the recorder needs to be at an appropriate position from which the audio of
the doctor and patient can be captured properly. Otherwise, there is a possibility of having different
levels of intensity between the doctor’s and the patient’s audio. Two studies  [22, 45] mentioned
the positioning of the recorder between the doctor and patient where the microphone can record the
audio from a distance.  The quality of the audio also depends on the device used to record the
audio. In three studies[29, 35, 45], the authors mentioned the tool that they used to record the
audio; one study  [29] used an H4n recorder and the other one used  a PCM-A10  [35] recorder
device for recording audio. The collected data for transcription is first required to be preprocessed
properly. One of the preprocessing steps is proper formatting of the audio file as the ASR model
may work on some specific  formats of audio.  Two studies kept the frequency of the audio at
44.1kHz [39, 41] and one study kept the frequency at 48kHz [20]. Lee et al. [35]recorded the audio
and modulated it to 96kHz/24-bit. On the other hand, Chiu et al. [22] used a fast Fourier transform
model where frequencies above 3800 Hz were ignored. In some of the studies, the collected audio
files were converted to *.wav [20, 27, 35, 41] or *.mp3 [22] formats.

3.4.2 Overcoming Noise

In six research studies[19, 22, 26, 30, 34, 40], the ASR model was performed adequately under
noisy backgrounds, where noise reduction was executed before transcribing speech audio data. In a
particular  investigation  [19],  the background noise was downsampled to  16 kHz to match  the
sampling rate of the clean audio. These two audio types were subsequently merged to create a
dataset consisting of both noisy and clean audio segments. The resulting dataset was subsequently
utilized to train the models, aiming to improve the accuracy of the ASR model. The purpose of this
step is to ensure accurate transcription of the speech and obtain the correct text representation from
the audio. To evaluate the performance of the models, noise can be added artificially to the audio
before training the model with the data. Chiu et al.  [22] added artificial noise  from 20 different
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backgrounds (room reverberation,  background music,  and café noises) where the noise ranged
from 5 dB to 20 dB. Such implementation was defined as Multi-style Training (MTR). In one
study[34], three types of noise were added artificially to the audio which were: cafeteria, people
talking,  and emergency sirens, which had three levels of intensities. The targeted models were
evaluated  using  the  combinations  of  the  noises.  A customized  convolutional  autoencoder  was
proposed  for  noise  suppression  by  Menon  et  al.  [19].  Automated  Speech  Recognition  (ASR)
technology  is  designed  to  recognize  and  transcribe  speech  into  text  format.  Paats  et  al.  [40]
integrated open-source ASR models (Kaldi toolkit, Thrax) with different approaches of Language
models on 219 radiology reports recorded in a real clinical environment  that contained natural
noise.  The language models were trained,  evaluated and modified for better  performance.  The
modifications were performed through 8 versions and in version 8 the language model was adapted
with  spoken  data.  Throughout  several  stages  of  modifications,  the  final  version  showed
improvement  from a WER value  of  18.4% (v1)  to  5.8% (v8)  and was able  to  be transcribed
efficiently in a practical noisy environment.

3.4.3 Language variations in the datasets 

The accuracy of the ASR output is strongly dependent on the language model used to train the
system. The language model is created by analyzing a large corpus of text data in a particular
language, which enables the system to recognize and transcribe speech in that language with a
higher degree of accuracy. In different studies, the audio was transcribed to different languages
such as Bahasa Indonesian  [27], Javanese slang  [27], English  [18, 19, 28, 30, 45], Hindi  [28],
Gujarati [28], Serbian [26], Croatian [26], Latin phrase [26], Singapore English [29], Korean [35],
Spanish[38, 41], Australian English [39], and Estonian languages[40].

3.4.4 Commonly used API models

In several cases where transcription is performed using established API models  [18–20, 29, 30,
32, 34, 35, 37–40, 44–46], audio files in larger numbers in varieties of formats are acceptable
where  the  models  are  available  publicly.  Some of  the  existing  well-known open-source  ASR
technologies are: (i) Microsoft Speech API (Microsoft Azure) [18, 34]; (ii) Google Cloud API[19,
20,  29,  32,  34,  35,  37,  39,  44–46] (iii)  Kaldi  [30,  38,  41];  (iv)  PocketSphinx  [34];  (v)  IBM
BlueMix API  [34]; (vi)  Naver Clova SR (Naver Corporation)  [35]; (vii)  Amazon Transcribe[35,
37, 39] ; (viii)  IBM Watson[39, 45] ;  (ix) Thrax  [40]. Table 6 shows the approached models,
datasets,  and performance based on the accuracy and WER of the proposed research work on
speech-to-text conversion. Fig. 3 shows the WER range of existing ASR models.
     In a study conducted by Xu et al. [29], the Google Cloud API was employed to transcribe audio
recordings  of  conversations  between physicians  and patients  diagnosed with  schizophrenia.  In
another research work by Preum et al. [34], the Google Cloud API was employed because yielded
superior results with the lowest WER in both noiseless and noisy environments. The resulting text
was then utilized to extract lexical resources, which were used to evaluate the health condition of
the patients. Jiang et al. [30] proposed the ASPIRE model using Kaldi, where two types of datasets
were  applied  to  the  models—formatted  and  unformatted—both  of  which  were  in  noisy
environments. The formatted inputs included medical commands such as drug names and dosages
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mentioned  by the  physician.  The unformatted  commands  included  medical  inquiries  and their
answers. The trained model performed well on the unformatted input. The unformatted dataset was
elaborated and contained additional vocabulary terms because the training set varied from the test
set,  and the  ASR model  did not  perform as  well  on the  unformatted  dataset  as  it  did on the
formatted dataset. 

Table 6 Proposed Research works on Speech to text Conversion

Approached Model Dataset Performance

Connectionist  Temporal
Classification  (CTC) with
Mel  Frequency  Cepstral
Coefficient  (MFCC)
technique  for
preprocessing [27]

500  voices,  50  data  for  a  test  set  of
Bahasa Indonesian language, each voice
of 2 seconds

Accuracy:  64%
WER: 36%

Microsoft Azure [18] ezDI dataset trained for 16 hours 21.5%

Speaker-independent ASR
system with  class  n-gram
and RNN language model
with code-switching [26]

904 hours of speech data:  379 hours of
Serbian (1087 speakers) and 525 hours of
Croatian (1742 speakers)

Accuracy: 98.6;
Perplexity  Score:
59.55;
WER: 1.4%

Google Cloud Speech API
[29]

34  hours  of  audio  data  from  71
individuals  at  the  Institute  of  Mental
Health Singapore (IMH).

WER: 9%

ASPIRE  model  using
Kaldi [30]

Formatted (30,000+ medical commands)
and  unformatted  input  (400,000+
question-answer  pairs)  in  a  noisy
environment

WER  (Unformatted
input):4.5%  SER
(Formatted  input):
14.4%
SER  (Unformatted
input): 27.1%

End to end RNN-T [31] 93.3  hours  of  doctor-patient
conversation,  34-534  utterances  per
conversation

Overall,  CER
reduction: 11.9%

Google Cloud Speech API
(commercial) and ASPIRE
(open  source)  with
Sequence-to-sequence
translation model [32]

Total  3807  deidentified  doctor-patient
conversation

WER  (Google  Cloud
API+S2S): 34.1%
BLEU  (Google  CLoud
API+S2S): 56.4%
WER  (ASPIRE+S2S):
34.5%
BLEU  (ASPIRE+S2S):
55.8%

Naver  Clova  SR,  Google 112  doctor-patient  conversation  audio Highest  Accuracy:
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Speech-to-Text  API  and
Amazon Transcribe [35]

files 75.1%  (Naver  Clova
SR)

Table 6 (continued)

Approached Model Dataset Performance

Dragon Medical Edition 2 
by Nuance Inc. [36]

audio recordings were sent to a server 
after being recorded, with no specific 
mention of the amount of data

WER: 22.4%

Google  Speech-to-Text
Clinical  Conversation
(Google  ASR)  and
Amazon  Transcribe
Medical  (Amazon  ASR)
[37]

Anonymized  36  primary  care  counters,
135647 spoken words with 3284 (2.4%)
NLCS  (Non-Lexical  Conversational
Sound).
Among these NLCS, 76 (0.06% of total
words, 2.3% of all NLCS) were clinically
relevant terms

WER  (Google  ASR):
11.8%
WER  (Amazon  ASR):
12.8%
WER (Google ASR on
added  NLCS):  40.8%
WER (Amazon ASR on
added NLCS): 57.2%

Neural  Networks  model
(NNET3  of  Kaldi,  based
on  sequential  models
including  I-Vectors
module) [38]

trained with almost 800 hours of audio of
Spanish speakers from Argentina

Accuracy:  91.7%
WER: 8.3%

open-source  software
components (Kaldi toolkit,
Thrax)  with  8  different
adaptations  of  the
language model [40]

219 Estonian language radiology reports
containing 19928 words in a real clinical
environment

Maximum
improvement  of  WER
(at version 8): 5.3%
WER  at  version  1:
18.4%

Connectionist  Temporal
Classification  (CTC),  and
end-to-end  models  with
attention  (LAS:   Listen,
Attend and Spell) [22]

anonymized  conversations  with
approximately
14,000 hours of audio

WER  (CTC):  20.1%
WER (LAS): 18.3%

RNN-T for  ASR and  SD
[21]

Approximately  15K  hours  of  doctor-
patient  conversation,  each  conversation
10 minutes long

WDER  (Word-level
Diarization Error Rate):
2.2%
WER  (Word  Error
Rate): 19.3%

Google  Cloud  text-to-
speech [45]

6,693  real  doctor-patient  conversations,
each  having  a  9  min  28-sec  duration;
recorded in a clinical setting using distant
microphones of varying quality.

WER: 50%
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Google  Cloud  text-to-
speech [46]

Medical Conversations dataset from 
AMC’17 [22] and a combined dataset 
SWFI [47, 48]

WER: 38.3%
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Fig. 3 WER Range of Existing ASR Models

3.4.5 Speaker Diarization

Speaker diarization [20, 21, 41] is an essential component in the conversion of speech to text, as it
enables  the  identification  of  individual  speakers  and  their  respective  speech  segments.  In  an
approach developed by Shafey et al. [21], speaker diarization and speech-to-text conversion were
performed  separately  using  a  Recurrent  Neural  Network  Transducer  (RNN-T)  which  had
improvement  in  WDER  rating  from  15.8%  to  2.2%.  Another  study  [41] introduced  the
development of a Kaldi X-Vectors-based system involving the training of new speaker diarization
models. X-vectors are a specific type of deep neural network architecture that can be utilized for
both speaker recognition and diarization.

3.4.6 Postprocessing

The preprocessing and postprocessing stages of ASR play critical roles in improving the accuracy
and  readability  of  the  output  text  and  optimizing  these  stages  can  significantly  enhance  the
performance of an ASR system. Adding punctuation and truecasing of the transcribed text makes
the text more understandable and enables the model to be more robust. Five studies [33, 36, 41, 43,
45] emphasized the punctuation and true casing of the transcription. Sunkara et al. [33] introduced
pre-trained masked natural  language processing (NLP) models,  namely  BERT, BioBERT,  and
RoBERTa, which were employed to predict punctuation and apply an accurate casing framework.
Data augmentation was performed to enhance the robustness of the automatic speech recognition
(ASR) model and reduce common errors. A postprocessing step was focused on an ASR model in
a  study  by  Lybarger  et  al.  [36],  where  the  transcribed  text  data  were  processed  by  adding
punctuations, capitalizing letters where needed; repeated phrases were removed, gender dictations
were corrected, and misspelt medical terms were updated. This postprocessing was performed by
manual editing by physicians. Selvaraj et al. [45] represented that the Google text-to-speech API is
not verbatim like IBM-STT and has a proper punctuation setting, which can add punctuation to the
transcript.

3.4.7 Limitations

With the rapid development of technology, the use of ASR models has become versatile and more
accurate. However, several drawbacks limit the functionalities of ASR models and need to be done
manually. Table 7 visualizes a brief idea about some of the limitations that the studies mentioned.

Table 7 Limitations of the Proposed ASR 

Model Used Limitations and Drawbacks

Google speech-to-text API [19] ● Unable  to  capture  some words,  especially  when the
speaker has a heavy accent

● more  data  and  fine-tuning  of  parameters  needed  to
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improve  the  accuracy  of  noise  suppression  and
transcription

Google  Speech-to-Text  model
[20]

● Slower for the physical exam section concerning the
history  section  due  to  typing  error  in  the  physical
section

● Speech  recognition  error  and  punctuation  insertion
errors resulting in a decrement in dictation speed

RNN-T for ASR and SD [21] ● No evaluation of performance gain from lexical cues
● Punctuation  and  capitalization  have  not  been

introduced

Connectionist  Temporal
Classification  (CTC),  and  end-
to-end  models  with  attention
(LAS:  Listen, Attend and Spell)
[22]

● Missing out words in longer utterances
● WER of patient audio was more than the WER of the

doctor’s  speech  as  the  audio  recording  device  was
closer to the doctor than the patient

● The  format  (MP3)  of  audio  was  more  likely  to
decrease the efficiency of the ASR model

● The LAS model had less casual conversational terms
compared to medical terms to learn, for which it was
giving errors while transcribing casual terms

Google Cloud Speech API [29] ● Complication in converting Singapore English to text
● Relatively small sample size

Naver  Clova  SR,  Google
Speech-to-Text, 
and Amazon Transcribe[35]

● Removal of words
● Spelling mistake
● Changing  the  spelling  of  the  word  resulting  in

different meaning

Dragon  Medical  Edition  2  by
Nuance Inc. [36]

● Misspelled medical terms
● Repetition of phrases
● Capitalization errors
● Wrong use of Punctuation and incorrect Acronyms

Table 7 (continued) 

Model Used Limitations and Drawbacks

Google Speech-to-Text Clinical
Conversation  (Google  ASR)
and  Amazon  Transcribe
Medical (Amazon ASR) [37]

● ASR  models  could  not  transcribe  the  NLCS  (Non-
Lexical  Conversational  Sounds,  specifically  the
clinically relevant terms)
Had  a  very  high  WER  value  when  NLCS  were
included

Neural  Networks  model
(NNET3  of  Kaldi,  based  on

● Error  in  recognizing  numbers,  which  is  a  sensitive
information
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sequential  models  including  I-
Vectors module) [38]

Amazon Web Services, Google
Cloud, and IBM Watson [39]

● Australian  English  was  available  for  Amazon  Web
Services and Google Cloud but not for IBM Watson

● Lower  accuracy  of  ASR  for  people  with
neurodegenerative disease 

Google  Cloud  Speech  to  text
API [45]

● High word error rate
● The model can only process the English dialect

3.5 Text Summarization Techniques 

3.5.1 Dataset Language and Features

Out  of 68 finalized studies, a total of 16 studies  [18–20, 44, 49–60] exhibited variations in the
techniques employed for text summarization.  Our study found a few research works that used
datasets  in  Chinese [43], English  [44],  Arabic  [50] and  Indian  [59]  language  for  text
summarization. As the conversation audio between the doctor and the patient is transcribed into a
text file, it is further optimized as the text file has too lengthy and unnecessary lines and terms. The
optimization  is  performed  by  executing  text  summarization  of  conversational  text  data  using
Natural Language Processing method [61]. Throughout such procedure, the conversational data is
reduced  to  the  point  where important  information  such  as  patient  history,  disease  symptoms,
clinical notes, doctor’s suggestions, medication suggestions, radiology reports, pathology reports,
and discharge summaries are extracted and represented in a condensed version. 

3.5.2 Types of Text Summarization Methods

Two primary methods can be used by NLP techniques to perform text summarization. These two
basic methods are: (i) Extractive Summarization and (ii) Abstractive Summarization.
     The extractive text summarization [51, 52, 56, 60, 62] techniques employ statistical or machine
learning  algorithms  to  discern  significant  sentences  based  on  various  factors,  including  word
frequency, sentence length, and position within the document. One study  [60] suggested that a
digital  scribe should aim to capture approximately 20% of the conversation to  create  a useful
extractive summary. Analyzing patterns related to highlighted words, medical terminology, and
speaker turns could assist in developing rules for information extraction. Wang et al. [20] used six
extractive  summarization  methods,  namely  LexRank,  TextRank,  LSA,  Luhn,  SumBasic,  and
KLSum, for the summarization of clinical trial descriptions, among which the TextRank model
gained maximum efficiency in summarizing the clinical trial text.
     On the other hand, abstractive summarization involves the generation of novel sentences or
phrases that encapsulate the essence of the source text. Abstractive summarization is considered to
be  a  more  intricate  process  compared  to  extractive  summarization  [63].  The  latter  involves
selecting and merging existing sentences from the source text.  On the other hand, Abstractive
summarization necessitates a more profound comprehension of language and context and often
utilizes complex NLP techniques. Using an encoder-decoder architecture, the Explainer Extractor
model generates abstractive summaries from clinical data. It offers insights into the significance
and relevance of patient information, helping medical professionals make informed decisions.
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In contrast, the patient record (PR) extractor is a model that extracts essential information from
patient  records,  such as diagnoses,  medications,  and laboratory  results.  In one study  [57],  text
summarization was performed on patient care episode entries, where both the Explainer Extractor
and  PR extractor  were  performed,  and  the  Explainer  Extractor  performed  better  than  the  PR
extractor. In another study [55], the system was employed to automatically generate a discharge
summary report for patients in the medical domain. The IDS has three main parts: In-Hospital
Course  Management,  Discharge  Medication,  Instructions  and  Follow-up,  and  Discharge
Symptoms. The model includes various techniques for preprocessing patient data obtained from
electronic medical records. These techniques involve breaking down the text into coherent blocks
of information, removing stop words that add noise to the data, reducing words to their root form
to group similar words, and generating an array of keywords obtained from segmentation.

3.5.3 Statistical and mathematical models 

One study  [19] included  the  term frequency-inverse  document  frequency (TF-IDF)  model  for
summarization  tasks,  where  the  text  file  was  first  preprocessed;  through  this  process,  the
punctuation,  stop  words,  and  least  used  words  were  removed,  and  feature  engineering  was
performed. TF-IDF vectors (TF-Term Frequency, IDF- Inverse Document Frequency) along with
Word Count Vectors were utilized and later on classification and categorization of the features
were performed using the SVM model.
     The  Behavioral  Tree  Framework  (BT)  [44] can  be  utilized  as  a  behavioural  modeling
framework for cognitive assistants. The framework can be used for converting text, identifying
important  concepts,  transforming  them  into  vector  space,  selecting  protocols,  and  suggesting
protocol  execution  or  intervention.  Protocol  execution  and  intervention  suggestions  are  done
through parallel  nodes, where multiple applicable protocols are executed concurrently.  Protocol
nodes are sequential and follow the EMS protocols' conditions and logic sub-trees.
     One study  [49]used  the NegEx tool  for  text  summarization  of  clinical  data.  The n-gram
technique involves categorizing the words in a sentence and creating a sequence of tokens from
them. The value of n determines the number of words in each token. In medical scribing, negated
disease filtration using NegEx helps to remove false positives, i.e. diseases or conditions that are
mentioned in the text but are not present in the patient's medical history. The NegEx algorithm first
identifies  negation  cues,  such as  "no",  "not",  "denies",  and "without",  which  indicate  that  the
medical concept mentioned in the text is negated. Then, it looks for medical concepts within a
specific context window around the negation cue and marks them as negated.

3.5.4 Transformer-based Models 

The Transformer language model [50, 53] is a deep neural network architecture commonly used in
NLP for language translation and text summarization tasks. When applied to medical scribing, a
Transformer language model can be trained on sizeable medical text datasets to learn patterns and
relationships  among  medical  concepts.  The  model  can  assist  medical  scribes  in  real  time  by
suggesting the next likely word or phrase as notes are being typed out. Enarvi et al.[53]compared
the effectiveness of RNNs and Transformer models for generating medical reports from patient-
doctor  conversations.  The  study  showed  that  Transformer  models  are  better  at  summarizing
relevant clinical conversation excerpts and generating medical information that is factually correct
and easily understandable, even when computing and time resources are limited.
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     One study [64]implemented the Well Behaved (WB) transformer model on Chinese clinical
Named Entity  Recognition on three different  datasets  where the model outperformed a lattice-
LSTM model. In another study [65], a Multi-Granularity Transformer (MGT) was used to extract
medical terms and their corresponding status from Chinese clinical dialogue. The proposed model
incorporates character-level and word-level features and cross-turn interaction to capture semantic
dependencies over long distances, improving state inference. The Multi-Granularity Transformer
(MGT)  is  a  type  of  transformer  model  that  utilizes  multiple  granularities  in  its  self-attention
mechanism. This allows it to process long documents more efficiently by breaking them down into
smaller chunks. MGT also uses a hierarchical architecture to optimize its performance further. 
     Two  studies  [54,  66] implemented  the  BERT  model  for  text  summarization.  BERT
(Bidirectional Encoder Representations from Transformers) can be used as the token-level encoder
[54]in the text summarization where the model encodes the input text at the token level, which
means that each word or sub-word in the input text is represented as a vector. The encoded tokens
are then fed into the utterance-level encoder to generate representations for each utterance in the
conversation.  The representations  are  then  tagged with labels  indicating  whether  the  utterance
contains a problem statement or a treatment recommendation. Finally, the labeled declarations are
concatenated to form the summary. Using BERT as the token-level encoder allows the model to
capture  the  contextual  information  of  each  token,  which  is  essential  for  generating  accurate
representations  of  the  input  text.  In  addition,  BART  (Bidirectional  and  Auto-Regressive
Transformer)  [58] can  generate  high-quality  summaries  of  EHR  and  progress  notes  through
extractive and abstractive summarization. The BART model is transformer-based. So, BART is
based on a sequence-to-sequence Transformer architecture, while BERT is based on a bidirectional
Transformer encoder.
     The T5 (Text-to-Text Transfer Transformer) [67] is a large-scale language model that can be
fine-tuned  for  various  natural  language  processing  tasks  such  as  text  classification,  machine
translation, and text summarization. One study included the T5 model for text summarization [47],
generating  a  list  of  care plan problems using progress notes from a patient's  electronic  health
record  during  hospitalization.  Furthermore,  domain  adaptive  pre-training  (DAPT)  was  used  to
improve the performance of T5 on domain-specific data. 
     Song et  al.  [54] proposed a  model  where  the  Hierarchical  Encoder-Tagging  (HET)  task
summarizes medical conversations by identifying and tagging meaningful utterances containing
problem  statements  or  treatment  recommendations.  The  HET  model  follows  a  hierarchical
structure where the input utterances are first encoded at the token level using BERT and ZEN and
then at the utterance level using an utterance-level encoder such as LSTM or Bi-LSTM.

3.5.5 Other Neural Networks

Sanjeev et al. [18] demonstrated the use of an NLP tool on unstructured data for tokenization and
removal of stop words. Afterwards, a developed neural network containing 1 input layer with 12
nodes, 2 hidden layers with 16 and 18 nodes respectively and 1 output layer with 14 nodes acts as
an AI chatbot and makes decisions on medications for diseases related to the heart. 
     Dialogue2Note [52] is a deep learning-based model that is designed to convert doctor-patient
conversations  into  accurate  and  structured  clinical  notes.  The  model  has  an  encoder-decoder
architecture.  The  automated  dialogue2note  sentence  alignment  system  can  be  used  to  create
realistic  training  data  for  natural  language  generation  systems.  The  dialogue2note  snippet
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summarization system involves generating a corresponding clinical note sentence given the gold
standard dialogue snippet text. One study [59] included the COCOA system where relevant clinical
information from Indian clinical records of an ICU in India was extracted using the model.  In
countries such as India, the adoption rate of structured clinical records is very low and the bulk of
clinical documentation is still either paper-based or semi-structured electronic formats. 

3.5.6 Metamap tool

In  one  study  [44],  the  first  step  was  UMLS Concept  Extraction,  which  extracted  biomedical
concepts from the text alongside their negation condition, semantic type, and position information
using MetaMap. Each concept  was assigned a Clinical  Unique Identifier  (CUI) in  the UMLS.
Following this, Concept filtering was subsequently performed to filter out irrelevant concepts from
the  extracted  set  using  a  predefined  set  of  specific  concepts  from  the  EMS  protocol.  Value
Retrieval was then conducted to extract additional information related to the concepts, including
their corresponding numeric values and preferred names. Among the evaluation metrics shown
(see Table 8), the F1-Score can be calculated because compared with other performance metrics,
namely accuracy, precision, and recall, the F1-score is the combination or mean value of recall and
precision.  Fig. 4 represents the F1 scores of the existing text summarization models.

Fig. 4 F1-Scores of Existing Text Summarization Methods

Table 8 represents the dataset used, results and limitations of the research approach to clarify the 
existing studies 

Table 8 Research works done on text summarization

Model Dataset Result Limitation and drawbacks

NLP  for
preprocessing  and
customized  Neural

16  hours  of  audio  files
and  medical  transcripts
on the ezDI dataset

Prediction
Accuracy: 88%
Micro  Precision:

● Prediction can be done
on diseases only related
to the heart
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Networks  for
prescribing
medication  for
heart diseases [18]

71.4%
Micro  Recall:
35.7%
Micro  F1-score:
47.6%

TF-IDF  and  SVM
for  text
categorization  and
labeling [19]

Mean  Accuracy:
94.98%
Precision: 94%
Recall: 94%
F1-score: 94%

● Important  data  lost  in
extractive
summarization;
physician input needed.

● The limited availability
of labeled medical data.

N-gram  technique
and  NegEx
(Negated  Disease
Filtration) [49]

1050 notes in 20 various
clinical
domains  including
urology,  nephrology,
radiology, orthopaedic,
and cardiovascular etc

Accuracy:
97.81%
Precision:
98.50%
Recall: 90.71%
F1-score: 94.44%

● Not Mentioned

Behavior  Tree
Framework  and
Metamap [44]

8302  real  EMS  call
records  from  an  urban,
high
volume  regional
ambulance agency in the
U.S.

Accuracy: 89%
Recall: 66%
Precision:  76%
F1-score: 71%

● inaccurate  concept
detection

●  need for more precise
detection techniques

●  accounting  for
contextual  limitations
during interventions

Dialogue2Note
sentence  alignment
and  snippet
summarization [52]

Audio  and  clinical  notes
of 500 clinical visits

No  particular
result given

● content incongruence,
● clinical  note-creation

challenges
●  inconsistent  order  of

appearance
●  a  relatively  small

dataset

Transformer+Point
er Generator [53]

a dataset  that  consists of
around  800k  encounters
from 280 doctors.

No  particular
result given

● repeated sentences  
● unfounded  clinical

statements

Table 8 (continued)

Model Dataset Result Limitation and drawbacks

TextRank
Extractive
Summarization
[56]

The  dataset  containing
277,000  clinical  trial
records

Rogue-1
Recall:  0.3805
Rouge-1
Precision:
34.86%

● abstractive
summarization  methods
to  provide  better
performance

● The  lack  of  context  and



21

Rogue-1  F1-
score: 35.3%
Rouge- F-score:
30.03%

complex  sentence
structures  in  some
clinical trial descriptions.

● Study  may  not  be
representative  of  all
clinical trial descriptions

Explainer Extractor
[57]

1.7 M paragraphs with 48
unique headings

55% summaries
adequate

● Further  research  is
needed for its potential in
other applications

T5  with  DAPT
model [58]

768  annotated  progress
notes from MIMIC-III

No  particular
result
mentioned

● Use  of  a  limited  dataset
for  annotation  and
evaluation

● The  dataset  may  also
carry social  bias features
that  can  affect  fairness
and equity  during model
training

● progress  notes  may
increase in length due to
copy-and-paste behaviour

● The  summarization  task
requires  complex
cognitive  processes  to
arrive  at  an  accurate
diagnosis

COCOA  System
(Rule-based  NLP
system [59]

corpus  of  250  annotated
discharge  summaries
from an ICU in India

F1-scores  for
diseases/sympto
ms,  procedures,
and  lab
parameters:
0.856,  0.834,
and  0.961
respectively

● No  normalization  of
diseases,  symptoms,  or
anatomical  parts  to  an
ontology

● the  study  did  not  use
disease mentions

● The  NLP  engine  is
limited by spelling errors
in the corpus, particularly
for  progression
descriptions  with  odd
punctuation.

3.6 Named Entity Recognition

Twenty-five studies demonstrated the application of NER [23, 46, 64, 65, 68–88]. The Named
Entity Recognition (NER) technique extracts all the necessary information from unstructured text
data  which  may  include  data  such  as  symptoms,  diseases,  medications,  procedures,  dosage,
frequency,  route of administration,  duration of treatment,  anatomical  location and many more.
Utilizing  the  NER model  various  sub-tasks  such as  classification,  annotation,  deidentification,
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relation extraction, recognition, normalization etc.

3.6.1 Language variation in the NER dataset

Diverse languages have unique grammatical structures, vocabularies, and idiomatic expressions,
which pose challenges for natural language processing (NLP) algorithms to accurately capture and
summarize  information.  The  performance  of  automated  scribing  models  in  Named  Entity
Recognition (NER) can be affected by diverse languages, which can lead to variations in grammar,
vocabulary,  idioms,  sentence  structures,  and  homophones.  Furthermore,  accent,  dialect,  and
regional language differences can further impact the accuracy of NER. Therefore, it is crucial to
develop approaches that can handle the linguistic nuances of different languages and to train the
NER  models  on  diverse  language  data.  Chinese  [64,  65,  71,  73–77,  89],  Spanish  [79,  90],
Swedish[90] , German  [82, 83],  and Russian  [84] were seen to be used as datasets for Named
Entity  Recognition  of  medical  documents.  Frei  et  al.[83] described  the  creation  of  a  German
medical NLP model using multiple techniques, including translation, annotation projection, and
transfer learning via model fine-tuning. The model performed well on external datasets and was
trained on a small, task-specific dataset. The paper also discusses related work in the field of NLP
for medical text and the difficulties of developing such models for German due to limited data and
privacy concerns. Some of the challenges which were faced while building the model mentioned in
the study were:  limited and poor-quality  datasets,  the need for gold-standard annotated  labels,
undisclosed data  in internal  datasets,  legal  disputes over privacy concerns,  and the absence of
publicly  accessible  German  medical  datasets.  Furthermore,  limited  research  has  focused  on
German medical NLP models due to the dominance of the English language.

3.6.2 Annotation and Labeling
 
However,  19  studies [23,  46,  57,  59,  60,  65,  67,  68,  70,  73,  76,  79–81,  83–85,  87,  88,  90]
mentioned manual  dataset  annotation  or  evaluation  for evaluation  of their  approached models.
Annotation in medical scribes refers to the process of identifying and labeling specific entities,
such as diseases, symptoms, treatments, and medications, in text data to train and test NER models.
The resulting annotated dataset can be used to train and evaluate machine learning models, which
can then be applied to new, unlabeled data to automatically extract relevant information. In one
study [57], the experts were instructed to read the keyword summary, read all the original nursing
entries from the care episodes, and finally return to the keyword summary to score it. The manual
evaluation and statistical analysis were blinded to which method was applied. In another study by
Weegar et al[90]. , a smaller set of text data was organized that had been manually annotated for
clinical  entities  to  train  and  evaluate  their  neural  network  for  Named  Entity  Recognition.
Specifically, the annotated corpus consisted of entities relevant to the Disease and Drug categories
in Spanish, as well as those
relevant to the Body part, Disorder, and Finding categories in Swedish. In an approach by Singh et
al. [23], two selected datasets were annotated and entities were grouped into seven classes: Name,
Profession, Location, Age, Date, Contact, and ID. An Italian dataset was annotated by 3 Italian
native speakers for de-identification in one study [87]. In another study [88], the dataset was first
manually deidentified and annotated manually

3.6.3 Open-source NLP models
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Shah-Mohammadi et al.  [70] implemented and compared the performances of 3 models namely
Spark-NLP, CLAMP and ACM.  The clinical pipeline of CLAMP consists of a tokenizer, POS
tagger, section identifier, deep learning-based named entity recognizer (LSTM-based deep learning
model),  assertion  classifier,  attribute  recognizer,  concept  mapper,  temporal  recognizer,  and
temporal  relation.  Entities  of various categories  can be identified,  including temporal,  test,  lab
value, treatment, drug, strength, negation, problem, subject, body location, severity, family history,
history, dosage, form, route, frequency, condition, duration, course, and generic.
 

3.6.4 Transformer based models

Two studies  utilized  [64,  65] transformer  models  for  NER tasks.  In  one  study,  Zhang  et  al.
[64]developed  a  transformer  model  called  WB-Transformer  for  Chinese  medical  NER  using
encoding.  This  model  encoded  characters  and words  from Chinese  electronic  medical  records
(EMRs) separately, reducing word segmentation errors and providing word boundary information.
WB-Transformer  was  more  efficient  than  Lattice-LSTM,  even  at  batch  size  1.  Li  et  al.  [65]
proposed an MGT model for Chinese clinical conversation extraction using character, word, and
sentence-level interaction information in model generation. This method helped the model capture
semantically-dependent long-distance data.

In eight studies [72–74, 80, 82, 84, 85, 88] the BERT model was used for NER. There can be
several versions of BERT models  that spend time on the structure and the dataset in which they
have been trained. BioBERT is trained on a large biomedical text corpus and can be fine-tuned for
various  biomedical  natural  language  processing  tasks,  such  as  named  entity  recognition  and
biomedical relation extraction. Meripo et al. [80] introduced appointment span extraction from the
medical  conversation and represented this  as a sequence tagging problem in which the hybrid
bioBERT model  was  used.  The  BioBERT hybrid  model  utilized  in  this  research  employed  a
combination of two weak supervision techniques, namely inaccurate and incomplete supervision.
The model was initially trained with inaccurate supervision on a sizable dataset of conversations
that contained labels with varying degrees of noise. Subsequently, the model was fine-tuned with
incomplete supervision on a limited subset of conversations that feature manually annotated labels.
This method enabled the model to acquire more precise and reliable predictions while reducing the
need for extensive manual annotation. The approached model outperformed the ELMo and other
BERT  variants.  Another  BERT  model  that  is  pre-trained  on  biomedical  text  is  SciBERT.
Memarzadeh  et  al.  [81] demonstrated  the  use  of  the  SciBERT  model  for  clinical  keyphrase
extraction. The SciBERT is almost similar to BioBERT, but it has applicability towards a wider
range of tasks. One study [83] demonstrated the utilization of GottBERT and German BERT for
clinical  annotation in Germany, where translation was also performed. The primary distinction
between GottBERT and German BERT is the pretraining dataset's  size,  where GottBERT was
trained on a  larger  dataset  (145GB) compared to  German BERT's  12GB. The German BERT
model exhibited inferior performance compared to GottBERT due to differences in pretraining
dataset sizes. The model is an updated version of GERNERMED demonstrated by the same author
in  a  previous  study  [82].  Yalunin  et  al.  [84] introduced  two  models,  RuBioRoBERTa  and
RuBioBERT, for performing Named Entity Recognition (NER) in the medical domain of Russian
language text. The RuBioRoBERTa model and an improved version of the RuBioBERT model
were constructed with additional pretraining techniques. Nesterov et al. [85] used the EhrRuBERT
model,  a  specialized  BERT  model  specifically  trained  for  Electronic  Health  Record  data  for
clinical Named Entity Recognition. The model could generalize entities and perform human-level
extraction efficiently from the most frequent data. The proposed model was trained with binary
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cross-entropy loss and the Adam optimizer.

3.6.5 Mathematical and graphical models

The TF-IDF model has applications in NER tasks. Memarzadeh et al.  [81] utilized the TF-IDF
model  along  with  SciBERT for  the  extraction  of  key  concepts  from clinical  documents.  The
research evaluated various unsupervised techniques for extracting keyphrases from clinical texts
and concludes  that  statistical  approaches,  as  well  as  the TF-IDF method,  outperform machine
learning methods such as KeyBERT.

Conditional  Random Fields  (CRF)  [91] is  a  type  of  probabilistic  model  that  can  capture
contextual  information  to  accurately  predict  named  entities  in  text.  By  considering  the
dependencies between labels and input features, CRF can effectively model these relationships and
make accurate predictions. Furthermore, CRF models can incorporate different features such as
word embeddings, morphological features, and contextual features to improve performance. Nine
studies  [23, 69, 72, 74, 75, 79, 87, 89, 90]evaluated CRF for performing medical Named Entity
Recognition  tasks.  Liu  et  al.  [89] implemented  CRF  on  Chinese  electronic  medical  records.
Features namely bag-of-characters, part of speech, dictionary features, and word clustering features
were  observed  and  their  features  were  examined.  In  another  study  [90],  CRF was  used  as  a
sequential tagger to predict the label of a word based on the word's context and the labels that had
been assigned to the previous words in the sequence. Singh et al.[23]  demonstrated an ensemble
learning model which included the CRF model for the deidentification of clinical data from diverse
locations.

3.6.6 Neural Network

Long Short-Term Memory (LSTM) is a subtype of recurrent neural networks (RNN) which have
been developed to overcome the issue of vanishing gradients observed in conventional RNNs. The
LSTM networks are proficient in learning long-term dependencies in sequential data by selectively
retaining or discarding information over time. Bi-LSTM is a variation of LSTM that captures both
the  past  and  future  context  of  the  input  sequence.  It  is  often  employed  in  natural  language
processing tasks, like sentiment  analysis  and named entity  recognition,  to enhance the model's
performance. Seven studies [71, 72, 75, 76, 79, 87, 90] introduced Bi-LSTM structures for Named
Entity Recognition tasks. Weegar et al. [90] proposed a Bi-LSTM model with word embedding for
Spanish  and  Swedish  NER  to  extract  information  from  clinical  texts  which  improved  the
performance of the NER method compared to the previous  method.  Table 9 shows the model
involved in the NER process along with the applicated dataset and their accuracy.  includes some
limitations of these NER approaches.

Table 9 Models Established on Named Entity Recognition

Model Dataset Accuracy
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Med7 NER model [68] 2018  n2c2  challenge  (train),  MIMIC-III
(train) and OxCRIS dataset (test)

F1-score:  95.7%
(94.4%)
 Precision:  0.982
(94.1%)
 Recall: 0.933 (94.7%)
on  n2c2  gold  test  set
(OxCRIS)

Well-Behaved
Transformer
Model+Self  Attention
[64]

CEMR  (China  Electronic  Medical  Record)
dataset,  CCKS  (China  Conference  on
Knowledge Graph and Semantic Computing)
2019  benchmark  dataset,  and  ALCD
(Alibaba Cloud Labeled Chinese Dataset for
diabetes) dataset.

Recall:  82.47%
F1-score: 83.29%

CLAMP model (LSTM-
based  deep  learning
model) [70]

Track2 i2b2 2014 NLP 
challenge dataset. The dataset consists of 521
medical texts in 
XML format

Precision:  97%
F1-score: 90%

ZEN2-
base+BiLSTM+CRF+R
adical features [71]

About  200,000  Chinese  medical  QA  from
ChiMed [92]

F1-score: 84.43%

MLNER+BERT [73] 1000 marked data from Chinese medicine’s
manual from TianChi Entity Recognition

F1-score:  70.87%
Recall:76.39%
Precision: 66.09%

Bi-LSTM  with  word
embedding [90]

Spanish corpus (disease,  drug)  of  342 MB,
Swedish corpus (disorder, finding, body part)
of 1.2 GB data

Average  F-measure:
71.90% (Spanish)
 75.96% (Swedish)

TsERL  model  (Bi-
LSTM+CRF) [75]

Two public Chinese medical  NER datasets:
CCKS2021 and CmeEE

F1-Score
(CCKS2021):  84.95%
Recall  (CCKS2021):
86.56%
Precision
(CCKS2021): 83.39%

Multilayer BiLSTM [76] 3588  sentences  of  real  Chinese  medical
dataset  containing  5  types  of  entities:
"symptom",  "check",  "check  result",
"disease", and "treatment"

F1-score:  78.69%
Recall:  77.8%
Precision: 79.6%

BiLSTM+CRFlayer [79] Spanish lung cancer dataset F1-score: 90%

Table 9 (Continued)
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Model Dataset Accuracy

BioBERT hybrid  model
[80]

24k hand-written transcripts of de-identified
medical conversations

Precision: 77.23%, 
Recall: 81.53%, and 
F1 score: 79.32%

Multi-Granularity
Transformer  (MGT)
model [65]

Chunyu  dataset:  1,120  dialogues  from  a
Chinese  medical  website;  CMDD  dataset:
2,067  conversations  from a  Chinese  online
pediatric health community.

F1-score:  0.877
(Chunyu dataset); 
 0.771 CMDD dataset)

GERNERMED
(combination  of  rule-
based  methods  and
machine  learning
models)  with  default
SpaCy parameters [82]

n2c2  German  dataset  (8599 sentences  with
172695 tokens)

Average  F1-score:
81.54%

GERNERMED++
(GottBERT) [83]

German translated 2018 n2c2 shared task on
Adverse Drug Event (ADE) and medication
extraction

Precision: 92.4%
Recall:  95%
F1-score: 94.6%

Fig.  5 shows  a  comparison  of  F1-Scores  among  existing  medical  NER  methods  for  better
understanding.

Fig. 5 F1-Score of Existing NER Techniques in Medical Domain

Table 10 Limitations of some of the NER approaches
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Paper Limitations and drawbacks

[80] 1. Limited set of annotations 
2. Difficulty in spotting confirmation clues
3. Ambiguity in appointment reason and time mentions 
4. Transcription error rate in automatic transcripts
5. Lower F1 score for time span extraction

[81] 1. Tokenization issues
2. UMLS assignment is error-prone without filtering.
3. MIMIC-III mortality rate is 23.2%, higher for older patients.
4. Repetitive and low-value concepts

[83] 1. limited understanding of how well the models generalize to unseen data 
2. Scarcity of independent annotated datasets
3. The creation of gold-standard annotations is an expensive task
4. character-level annotation may not preserve the same level of granularity as in 

other types of annotation.

3.7 Prevention of Patients Privacy and Ensuring Security

In accordance with the regulations set forth by the Health Insurance Portability and Accountability
Act (HIPAA) [93]n the United States, the anonymity of patients must be ensured when generating
automated medical documents. Such measures serve to enable healthcare organizations to uphold
patient  privacy  and  confidentiality.  Such  measurement  prevents  several  incidents  such  as
discrimination,  stigmatization,  and identity  theft.  Medical  de-identification  refers to a series of
techniques  and  procedures  aimed  at  the  anonymization  or  obscuring  of  personal  identifying
information that may be present within medical records or other forms of health-related data, thus
effectively mitigating the risk of inadvertent disclosure of sensitive patient information which may
include patient's name, address, profession, IDs, date, social security number, insurance details,
and contact information.

3.7.1 NLP Models for De-identification

Nine  studies  [23,  46,  72,  86–88,  94–96] have  incorporated  deidentification  as  part  of  their
methodology.  The  de-identification  approaches  were  established  based  on  different  regional
datasets  which  include  from  the  USA  [94],  New  Zealand [23],  Italy [87],  France [88],  and
Australia [72, 95]. Singh et al[23].  proposed an approach where the deidentification of protected
health information (PHI) in electronic health records (EHR) was performed using an ensemble
framework which combined the rule-based CRF model and incremental Naive Bayes algorithm.
Two datasets were used in this model: the publicly available i2b2 dataset and the local dataset
collected in New Zealand. The diversified datasets enabled the model to perform in various clinical
settings.  In  another  study  [86],  Clinical  reports  across  different  stages  of  prostate  cancer
management, such as consultations, on-treatment visits, phone encounters, treatment records, and
follow-ups, were collected and subjected to de-identification.  The corpus was tokenized by  the
NLTK tokenizer  [97] and later on the punctuations and numbers were removed. The processed
data  were  subsequently  embedded  using  the  Word2vec  model,  and  binary  classification  was
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performed to classify the name and non-name data. Catelli et al. [87] combined the Bi-LSTM and
CRF models as a sequence architecture to perform de-identification on the Italian dataset from the
Society of Radiology (SIRM). The model with stacked embedding achieved an F1-score of 98.6%,
outperforming a state-of-the-art BERT BASE model in all evaluation metrics except for the binary
token level. 
     Cohn et al.  [46] proposed a de-identification task of public health information (PHI) on both
medical conversation text data and audio. With respect to the text data, NER models such as rule-
based models and machine learning models were applied. For de-identifying audio data Automatic
Speech Recognition (ASR), Named Entity Recognition (NER) on the transcript, and aligning the
text to the audio were established. The objective of this de-ID task pipeline was to generate a
modified audio stream that removes Personal Health Information (PHI) from the original input.
Tchouka et al.  [88] proposed a transformer-based BERT model for the French language named
CamemBERT on a large set of unlabeled medical notes obtained from a French public hospital.
Hyperparameter  tuning  was  later  on  done  using  a  Tree-structured  Parzen  Estimator  algorithm
while training the model. Another de-identification approach was made in one study [72], where
de-identification was done on Personally Identifiable Information (PII) from Australian hospital
discharge summaries. The study applied an ensemble model which stacked SVM models with 3
(BiLSTM + CRF, CNN + CRF, and BERT). Although several advances have been made in terms
of deidentification techniques, due to the limited datasets available, the models could not perform
well  in  different  environments.  El-Hayek et  al.[95]utilized  four  existing  de-identification  tools
(HMS Scrubber, MIT De-id, Philter, MIST) on Australian patient progress notes and evaluated
their  performance.  Although the Philter  model  gave the best output,  it  was suggested that the
existing models are not suitable enough and further modifications are required. 

Table 11 Limitations of the proposed deidentification methods

Research Work Limitations and drawbacks

[23] ● utilized model made use of basic lexical and orthographic features, failing
to fully leverage the corpus's comprehensive attributes.

● Validation set is similar to text set which may not always be the case
● Only F1- score was measured
● More data was required for risk-based evaluation method

[88] ● The substitution strategy for date and age information is limited
● The proposed approach may not perform as well on informal medical 

documents
● The effectiveness of the proposed approach may depend on the specific 

dataset

[72] ● sensitive information such as genetic data, social security numbers, and 
email addresses were not considered

● Proposed model needs to be applied to other healthcare centers
● the study did not address the ethical and legal issues related to de-

identification
● No assessment of de-ID impact on clinical research or quality.

3.7.2 GPT-4 on De-identification:
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Recent success of AI and machine learning models have spread towards diversified fields which
led  to  the  establishment  of  ChatGPT and  GPT-4.  Liu  et  al.[96] introduced  DeID-GPT,  a  de-
identification tool based on ChatGPT and GPT-4 which showed remarkable results in anonymizing
patients’  sensitive  information.  ChatGPT  and  GPT-4  are  Large  Language  Models  which  are
trained on very large data. In this study, the model was evaluated using the 2014 i2b2/UTHealth
de-identification  challenge  dataset  [98] where  the  DeID-GPT outperformed all  the  other  LLM
models showing accurate performance in diversified data and overcame the limitations of previous
LLM models. The approached model gained an accuracy of over 99% showing optimal results in a
zero-shot scenario. 

4. Discussion

4.1. Study Components

A systematic  review involves  gathering  information  from published studies  related  to  medical
scribes, analyzing the data, and presenting a concise and accurate summary of the findings. The
comparative analysis revealed that a generic medical scribing model contains 3 major components
for creating a complete prescription from a doctor-patient conversation. These components include
ASR, text summarization and NER. While there has been limited progress toward the development
of a fully automated medical scribe, numerous studies have investigated various components of the
system in isolation by applying different techniques.

4.2. Key Factors

For each major subtask, several factors need to be considered. Rather than solely assessing the
performance of established models, our study has placed greater emphasis on the adaptability and
versatility  of the proposed techniques  across  various  linguistic,  regional,  and clinical  contexts.
Through  utilizing  these  techniques  across  different  regions  and  settings,  their  robustness  and
effectiveness in a wide range of scenarios are observed. This is particularly significant, as the use
of electronic healthcare systems continues to expand, and there is a growing need for effective
techniques that can be applied across a variety of contexts. We conducted an empirical analysis to
investigate  and  contrast  the  effectiveness  of  various  models  pertaining  to  diverse  subtasks,
datasets,  regions,  and environments.  Additionally,  we explored  how the  performance  of  these
models  could  be  enhanced  through  the  integration  of  complementary  models.  Our  research
methodology was designed to address the research questions that were previously articulated and
was structured  to  provide meaningful  responses  to  those  inquiries  through the  utilization  of  a
variety of research approaches selected from our search queries. Our research questions addressed
the influence of demographic factors, language, clinical setup, environment and population on the
tasks related to digital scribing. 
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Fig. 6 Geographical Representation of Regions from which datasets of the selected articles have been collected

4.3. Key Findings of the Models

With the rapid development of natural language processing and automatic speech recognition, an
increasing number of technologies are becoming accessible for medical documentation purposes.
The observed approaches were evaluated through several evaluation metrics.  The ASR models
were evaluated through the score of WER (Word Error Rate),  WDER (Word-level Diarization
Error Rate),  and BLEU (Bilingual  Evaluation  Understudy).  Among these metrics,  the WER is
considered to be the most ideal evaluation metric. The research we have elected for ASR has the
WER ranged from 1.8% up to 38.3% even though one study [37] had the WER of 40.8% (Google
text to speech API) and 57.2% (Amazon ASR) due to the presence of non-lexical conversational
sounds (NLCS). After assessing the Word Error Rate (WER) of 20 different models chosen from
the identified approaches, it has been determined that the mean WER of all the evaluated models is
22.9935% which is  quite  high  compared to  an  available  adequate  state-of-the-art  ASR model
which has the WER of approximately 5% [99]. Most of the ASR models utilized Google speech-
to-text API for the transcription. Among all the studies related to ASR models, 42.31% of studies
used the Google speech-to-text API model. The selected models are trained by utilizing datasets
that  vary  in  size  from minimal  to  medium  of  different  languages.  The  prime  reason  for  the
variation is the versatility in languages and accents; and the presence of lexical resources. Besides
that, the clinical setup, surrounding environment,  and background noise have an impact on the
performance of the ASR model. The lowest WER recorded is 1.8% where 904 hours of Serbian
and Croatian audio datasets were used on an RNN speech model. On the other hand, high WER
(38.3%) was found due to the bulk size of the English dataset [46]. Thus, the language and size of
the dataset play a vital role in the performance of the ASR models. 
     Approaches that made significant progress  [18, 21, 26, 29, 30, 37, 40, 100] in transcription
utilized  Google  text-to-speech  API,  Kaldi  toolkit  or  integrated  RNN-based  methods  with
preprocessing and postprocessing steps. Noise reduction, punctuation addition & truecasing have
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been performed as  preprocessing and postprocessing steps in  some new research studies.  One
study also mentioned downsampling the audio to 16 kHz to mitigate noise and get a clear audio
file.  The ASR models  are  capable  of  performing real-time transcription  of audio conversation
which can reduce the time consumption significantly compared to manual scribing.
      From the study on the existing text summarization models, it has been found that the extractive
text  summarization  models  were  utilized  in  more approaches  compared to  the  abstractive  text
summarization methods even though the abstractive text summarization method shows superior
outcomes.  4  major  evaluation  metrics  were  measured  in  most  of  the  approaches  which  are
accuracy, recall, precision, and F1-score. There were a few variations in languages for the text
summarization  task.  We  have  considered  the  F1-score  for  evaluating  the  performance  of  the
model. The F1-Scores were between 35.31% to 96.1%. The F1-score dropped by a big margin in
the Textrank  [56] extractive summarization technique. Overall, the average F1-Score for all text
summarization models was 78.78%. Transformer-based models are seen to be applied in most
approaches such as the BERT model, and T5 model. However, superior results were seen in the
rule-based COCOA model.
     In our findings, entity extraction of doctor-patient conversation included categories namely
drug names, route of administration, frequency, dosage, strength, form, duration, disease name,
symptoms,  abnormal inspection result,  test,  treatment,  degree of illness,  body part,  and family
history.  Furthermore,  some  rare  categories  such  as  diabetics,  coronary  artery  disease  (CAD),
hypertension,  hyperlipidemia,  obesity,  smoking status,  image inspection  and other non-medical
entities. There were quite variations in dataset languages for performing the NER task. In most
studies, Chinese datasets were seen to be used. A total of nine studies used Chinese datasets for
training the NER models. Among the models used for clinical NER tasks, various types of BERT
models have been observed to be used and the BERT models are utilized in most studies.  In
addition, the CRF models are also seen to be used in an equal number of studies. For evaluating the
performances of the NER models, we have selected the F1-score to be the benchmark. The F1-
score is combined with both precision and recall which gives a more balanced measurement of the
confusion matrix. The score gives a more precise evaluation while one class is more dominating
over the other one and the precision and recall results are not compatible. It was found that the F1
scores of the NER models ranged from 70.87% to 95.7%. On the Med7 NER model  [68], the
dataset was trained on MIMIC-III and had an average macro F1-score of 95.7%. The model was
furthermore  tested  on  the  OxCRIS  dataset  and  achieved  an  F1-score  of  94.4%.  The  models
performed quite  well  in  entity  extraction  tasks  with  satisfactory  results.  The NER task in  the
German language has shown improvement where the GERNERMED++, and upgraded German
NER model  of GARNERED showed a 16.0167% improvement  in  the F1-score.   explains  the
performance of the approached models for the NER tasks. 
     In both text summarization and NER tasks, MIMIC-III models were seen to be used in several
approaches [58, 68, 81, 83]. Pretraining the model with this dataset made the model fine-tuned and
increased  its  performance.  The  transformer-based  models  could  also  perform  well  in  de-
identification tasks but could not give a reliable result and were bound to limited datasets. But the
failings  were  overcome  by  the  latest  implementation  of  DeID-GPT  by  GPT-4  which  gave
extraordinary results which proves the model to be reliable on almost any sort of dataset. The
approached model outperformed results of all the existing models.
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Table 12 Different NER Tasks done by the approached models

Model Name Reference Task Performed

Transformer 
Model

[64] Well Behave Transformer model
● employed an encoding method that effectively encodes 

Chinese EMR characters separately.
● used a layer that models both word and character 

features, followed by decoding that considers character 
relationships.

● obtained information on word boundaries while 
minimizing the influence of errors in word segmentation

[65] Multi-Granularity Transformer
● merged word-level and character-level strings
● aggregated the representation of the strings
● measured the distance between tokens

TF-IDF [81] ● performed keyphrase extraction
● evaluated the significance of each term in a document 

by measuring its frequency as well as its rarity across all
documents

● No use of tokenization, which ensured that the meaning 
of phrases composed of multiple words was maintained

BERT [81] Sci-BERT
● Represented extracted keywords
● Gave optimal outcome in text classification
● Sequence labeling
● dependency parsing

  

[80] BioBERT
● Enhanced appointment span extraction
● Pre-trained on large PubMed abstracts
● Outperformed ELMo and BERT variants

[83] GottBERT and GermanBERT
● Performed German medical NER

[84] RuBioRoBERTa
● Performed Russian medical NER
● Classifying words from drug review
● Predicted diseases from patient symptoms
● Suggested relevant symptoms
● Provided binary response on a medical given question
● Made relation between a statement and hypothesis
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Table 12 (continued)

Model Name Reference Task Performed

[85] EhrRuBERT
● Trained medical tokenizer learns specialized token 

embeddings from medical data
● Applied dynamic class weightings for faster training
● Utilized the entire text representation to extract all 

entities simultaneously.

CRF [69] ● Followed normalization and expand system to extract 
biomedical and clinical terms

[89] ● Performed Chinese medical NER such as bag-of-
characters, part of speech, dictionary feature, and word 
clustering feature

[74] ● Ignores structural errors in the output of the preceding 
feature extraction

[90] ● Performed as a sequential tagger to predict entity labels 
for current words based on contextual representation and
previously predicted labels.

● utilized dense characterizations, well-suited for clinical 
text containing extensive vocabularies and numerous 
less commonly used words.

[75] ● Found the interdependence between consecutive labels 
in the NER task

Bi-LSTM [71] ● Integrated information by merging forward and 
backward LSTM

● encoded the semantic features of the current word.

[90] ● Acquire contextualized representations of the input 
words.

● Obtained word and character embedding
● Merged both character and word vectors
● Created representation for out-of-vocabulary words

[76] ● Captured contextual information at various depths from 
given text.

● Improved the semantic understanding through different 
sizes of hidden layers

● Extracted local contextual features
● Found contextual semantic features within the text 

through the Semantic Feature Extraction Layer
● Capture word-level features
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4.4. Recommendation

Even though several models have shown promising results, there has been seen the scarcity of
datasets which has affected the performance most. The datasets were of a specific language and
accent for which created a barrier in the diversity of the models. Thus, for future improvement,
Furthermore, the models seemed to perform poorly when non-lexical terms were included in the
test  set.  For  tokenization,  there  can be out-of-vocabulary  words  which  don’t  seem to exist  in
tokenizer vocabulary due to the small size of the dataset. The primary suggestions we can provide
for future endeavor on medical scribing include:

 The models have to be trained in which large corpus and variations in accent have to be
made. Furthermore, more non-lexical terms are needed to be added in the dataset on which
the dataset will be trained. 

 The frequency of the audio should be properly scaled for the trained model 
 Audio needs to be recorded on an efficient recorder which can minimize the noise level of

the recording and capture clean audio. Furthermore, the clinical setting and environment
around the recording area should be kept as noise-free as possible.

 If noise is also recorded, it needs to be suppressed using the adequate noise-reducing tool as
a preprocessing step of the ASR model. Also, the ASR models should be trained with both
clean and noisy audio.

 Proper annotations are needed on datasets. Thus, the annotations should be gold standard
annotations which will include topics like part-of-speech tags, named entities, sentiment
labels, and semantic relations

 As the transformer models are performing more stably, they should be used and merged
with other models for better results.

 Latest innovations like GPT-4 have been seen to be implemented on a large scale of data
with various languages  for de-identification.  Such approaches should be made on other
tasks such as NER and text summarization.

 For out-of-vocabulary words or unknown tokens, generation of similar words is required.
Generated models such as Hidden Markov models, and Gaussian Mixture models should be
incorporated.

5. Conclusion

The recent development on medical scribing is accelerating at a very slow pace with up-to-date
NLP models. Utilizing three tasks successively (ASR, text summarization and NER) can produce a
complete medical document. From our review, we have been able to understand that the ASR,
NER and text summarization models have not been able to show satisfactory results for which
these  models  can  be  employed  practically  but  the  progress  is  visible  and  such  practical
implementation can be hoped to be observed in near future. The models performed depending on
the datasets they were trained on. Among the ASR models, Google text-to-speech API was used
the  most  and the  model  performed  moderately.  But  the  neural  network-based models  showed
highest efficiency having the lowest value of WER. On the other hand, the CRF, BERT, Bi-LSTM
and other transformer-based models were most commonly used NER models which were used for
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extracting keywords of specified categories,  tokenization,  creating entity relations,  labeling and
many more. For text summarization various models were used of which the BERT model had quite
a few utilizations. Besides, transformer language models were also used. Datasets containing the
personal  information  of  patients  in  different  languages  were  subjected  to  de-identification
techniques to ensure the preservation of their privacy. Our review also showcases factors which
affect the training model.  To mitigate  the losses and optimize the performance of the training
model,  preprocessing  and postprocessing  were  performed  on the  factors.  From the  limitations
observed from the research work, our review work concludes that more work needs to be done on
healthcare sectors based on AI and NLP tools to establish easier and more convenient ways of
medical documentation. As technology is advancing faster and AI-based tools are being used more
and more, it can be hoped that the technologies are soon to be incorporated in healthcare sectors to
improve the clinical documentation process.
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